
Homework 3

CS 4104 (Spring)

Assigned on February 22, 2021.
Submit PDF solutions on Canvas
by 11:59pm on March 1, 2021.

My team-mate is: Joseph McAlister

Problem 1 (20 points) Solve exercise 5 in Chapter 4 (pages 190–191) of “Algorithm Design” by Kleinberg
and Tardos. Let’s consider a long, quiet country road with houses scattered very sparsely along it.
(We can picture the road as a long line segment, with an eastern endpoint and a western endpoint.)
Further, let’s suppose that despite the bucolic setting, the residents of all these houses are avid cell
phone users. You want to place cell phone base stations at certain points along the road, so that every
house is within four miles of one of the base stations.

Give an efficient algorithm that achieves this goal, using as few base stations as possible. Just in case
the problem statement is not completely clear, you can assume that the road is the x-axis, that each
house lies directly on the road, and that the position of each house can be specified by its x-coordinate.

Hint: Sort the base stations by x-coordinate. Develop your algorithm now. To design your proof of
correctness, follow one of the proof strategies we discussed in class (and present in the textbook) for
greedy scheduling problems.

Solution:

We begin by sorting the houses in order of increasing x coordinate.

Then, from the origin x = 0, or from the ”West-most” end of the road, we move to the right, ”east-
bound,” until the first house is reached at some position xi.

Place a base station at xi+4 and delete all houses on the range [xi, xi+8] which are in the range of the
base station at the midpoint of that range.

Advance to the next available house and repeat until there are no more houses, then return the set S
of positions of base stations {xi+4, ..., xk}.

Algorithm 1 PlaceBaseStations(H)

1: S ← ∅
2: L← Sort(H)
3: for every house index i and house position h ∈ L do
4: Add h + 4 to S
5: j = i

{while the next house in L is in range of base station, remove it from L}
6: while L[j + 1]− (h + 4) ≤ 4 do
7: Delete(L[j + 1])
8: j + +
9: end while

10: end for
11: return S

Proof of Correctness:

Let O be the optimal “schedule” of base station positions {o1, ..., om}, we must show that the size of
the result of our algorithm, |S|, is the largest possible in any set of mutually compatible schedules –
that using the minimum amount of stations, we cover the maximum number of houses.

1

CS 4104 (Spring): Homework 3

In other words, we will show that |S| = |O|.
Let s1, ..., sk be the positions of base stations in S in increasing order of distance from the origin x = 0.

Let o1, ..., om be the positions of base stations in O in increasing order of distance from the origin
x = 0, with m ≥ k.

Then, |S| = |O| ⇐⇒ m = k.

Claim: For all indices i ≤ k, pos(si) ≥ pos(oi).

Proof by induction:

Base case: i = 1, our greedy solution is optimal since we place the first base station as far east
from the first house as possible while still covering the first house, maximizing the amount of
houses this base station covers.

Inductive Hypothesis: Assume that the claim holds for i ≥ 1 such that base stations at positions
{s1, ..., si} cover all the same houses as the optimal solution {o1, ..., oi}
Inductive Step: if we add another base station with index i + 1 to S, we are guaranteed that
S = {s1, ..., si, si+1} will still cover all the houses that would be covered by substituting si+1 with
oi+1.

Therefore, pos(si+1) ≥ pos(oi+1).

Claim: k = m

Finally, if k > m, then S does not cover all houses, but we know that pos(sm) ≥ pos(om) from
the above inductive proof, so then O would also fail to cover all houses.

But this is a contradiction, since we assumed that O is the optimal solution.

Therefore k = m, and |S| = |O|, so our solution is optimal. �

Proof of Runtime Complexity :

The most costly step of our algorithm is sorting the houses in the input set H on line 2 and storing it
in a list L. We can assume that this step takes O(n log n) time.

In the worst case, where each house is at least 9 miles away from one another such that no base station
covers more than a single house, our for loop on line 3 will iterate |H| times. In any other (better)
case, the inner while loop on line 6 is negligible since we can assume that houses do not overlap on the
x-coordinate, so a finite amount of houses can exist on the interval [xi, xi+8] which is asymptotically
insignificant.

Therefore, the overall runtime complexity is O(n+ n log n) = O(n log n) since, after we sort the input,
we may have to iterate over every element in the list of size n again to place the base stations. �

Problem 2 (30 points) Solve exercise 13 in Chapter 4 (pages 194–195) of your textbook. A small business—
say, a photocopying service with a single large machine—faces the following scheduling problem. Each
morning, they get a set of jobs from customers. They want to do the jobs on their single machine in
an order that keeps the customers happiest. Customer i’s job will take ti time to complete. Given a
schedule, i.e., an ordering of jobs, let Ci denote the finishing time of job i. For example, if job j is
the first to be done, we would have Cj = tj , and if job j is done right after job i, then Cj = Ci + tj .
Each customer i also has a given weight wi that represents his or her importance to the business. The
happiness of customer i is expected to be dependent on the finishing time of i’s job. So the company
decides to order the jobs to minimize the weighted sum of completion times,

∑n
i=1 wiCi.

Design an efficient algorithm to solve this problem, i.e., you are given a set of n jobs with a processing
time ti and weight wi for each job. You want to order the jobs so as to minimize the weighted sum of
completion times,

∑n
i=1 wiCi.

Hint: Try to use one of the techniques we have seen for proving the correctness of greedy algorithms.
Working “backwards” from what you need to prove might help you to discover the algorithm. Note
that the completion times are not part of the input. The algorithm has to compute them. So you
cannot sort the jobs by completion time.

2

CS 4104 (Spring): Homework 3

Solution:

In order to minimize the weighted sum of completion times
∑n

i=1 wiCi, we will sort the jobs by
decreasing order of wi

ti
and process them in the resulting order.

Algorithm 2 ScheduleJobs(J)

1: S ← Sort(J) { Sort jobs by auxiliary criteria of wi/ti }
2: return S

Proof of Correctness:

Claim: The presented algorithm is at least as good as any other optimal schedule O with inversions.

If there exists an inversion in O such that for a pair of jobs i, j where i precedes j in O, and j before i
in our greedy solution S, then there also exists a pair of adjacent jobs between i, j (which we will also
call i, j for simplicity) such that

wj

tj
≥ wi

ti
according to our definition of greedy being the ordering of

jobs by this proportion.

Claim: Swapping i, j does not increase the weighted sum of completion times f =
∑n

i=1 wiCi. Therefore
after swapping all such adjacencies in O, we will have our greedy schedule S.

Proof : If we have two inverted, adjacent jobs i, j, then swapping them in a schedule does not
affect the completion time C of any other jobs.

Before swapping, i, j account for the following partial sum in f :

wi(C + ti) + wj(C + ti + tj)

After swapping, i, j account for the following partial sum in f :

wj(C + tj) + wi(C + tj + ti)

The difference between these two is:

(wjC + wjtj + wiC + witj + witi) (1)

−(wiC + witi + wjC + wjti + wjtj) (2)

= witj − wjti (3)

Since we know that i, j are inverted in the schedule according to the greedy definition of order
according to proportion of w

t , then we know that the difference between the product of a smaller
weight and a bigger time and the product of a bigger weight and a smaller time (3) will be less
than or equal to zero. That is witj − wjti ≤ 0.

Therefore, swapping two inverted jobs does not increase f , and so we can swap all inverted jobs in O
until we arrive at S. Since our algorithm produces a schedule with no idle time and no inversions, it
is optimal.

Proof of Runtime Complexity :

Provided that we do not have to actually execute the jobs in the greedy schedule S, the only significant
step in our algorithm is the initial sort on line 1 which we can assume takes O(n log n) time.

Problem 3 (20 points) Consider the version of Dijkstra’s algorithm shown below written by someone with
access to a priority queue data structure that supports only the Insert and ExtractMin operations.
Due to this constraint, the difference between this version and the one discussed in class is that instead
of the ChangeKey(Q, x, d′(x)) operation in Step 8, this version simply inserts the pair (x, d′(x)) into
Q. The danger with this algorithm is that a node x may occur several times in Q with different values
of d′(x). Answer the following questions.

3

CS 4104 (Spring): Homework 3

1. (6 points) When the algorithm inserts a pair (x, d1) into Q, suppose the pair (x, d2) is already in
Q. What is the relationship between d1 and d2?

Solution: d1 < d2

2. (8 points) Using this relationship, how will you fix this algorithm? You just have to describe your
correction in words, e.g., by saying “I will add the following command after Step X: . . . ” You do
not have to prove the correctness of your algorithm.

Solution:

By adding an if statement after line 3 encompassing lines 4-10 to check whether or not v has been
visited before the inner loop on lines 5-10 (i.e. If not v ∈ S), we can take advantage of the above
relationship as well as fact that the PriorityQueue being used to maintain the tuples (v, d′(v)) can
be implemented as a Min-Heap, meaning that if d1 < d2, ExtractMin will retrieve the tuple
corresponding to the smaller of the two distance values first. If we check if the node has already
been visited, i.e. v is already in S, then we can simply skip on to the next node.

3. (6 points) What is the running time of this modified algorithm? Just state the bound in terms of
the number of nodes n and the number of edges m in G.

Solution: Since checking membership of a set is a constant time operation, the runtime of the
algorithm remains O(m log n).

Algorithm 3 Dijkstra’s Algorithm(G, l, s)

1: Insert(Q, s, 0).
2: while S 6= V do
3: (v, d′(v)) = ExtractMin(Q)
4: Add v to S and set d(v) = d′(v)
5: for every node x ∈ V − S such that (v, x) is an edge in G do
6: if d(v) + l(v, x) < d′(x) then
7: d′(x) = d(v) + l(v, x)
8: Insert(Q, x, d′(x))
9: end if

10: end for
11: end while

Problem 4 (30 points) Gasp! Your best friend Will Byers is trapped in The Upside Down yet again!! You
have to rescue him from the Demogorgon!!! Fortunately, due to his repeated forays into The Upside
Down in previous years, you have a very good map of this dimension. Will has figured out several
hiding spots where the Demogorgon cannot see him; he is currently secreted in one of these spots.
Moreover, due to Eleven’s deep sensory perception, you have very good estimates of how safe it is to
travel from one hiding spot to another without being devoured by the Demogorgon. Finally, you also
know the locations of several interdimensional portals between our world and The Upside Down.

Using the algo-fu you have gained in CS 4104, you represent The Upside Down as an undirected graph
G = (V,E), where each node in V is either a hiding place or an interdimensional portal. Every edge
(u, v) connects two nodes in V . The weight w(u, v) of this edge is the probability that as you go from
u to v (or v to u, since the edge is undirected), the Demogorgon will not devour you. Clearly, this
weight is between 0 and 1 since it is a probability. The weight of a path in G is the product of the
weights of its edges. This weight denotes the probability that the Demogorgon will not eat you as you
traverse this path. With this set up, you formulate the OperationSaveWillByers problem:

Given an undirected graph G = (V,E), where every edge (u, v) is associated with a weight
wu,v that lies between 0 and 1, a subset S ⊂ V of nodes, a node t, and a parameter r that
also lies between 0 and 1, is there any node in S such that the weight of the path from this
node to t is at least r?

4

CS 4104 (Spring): Homework 3

In this dimension (alas, we are back to the real world), your task is to find a problem X that we have
discussed in class and use an algorithm A that we developed for X to solve OperationSaveWillByers.
You are not allowed to change A. However, you can modify G to your heart’s content and pass this
modified version to A. Moreover, you can further manipulate the output to A to obtain a solution
for OperationSaveWillByers. In other words, you use A purely as a subroutine without changing its
internal steps. Note: The Demogorgon will devour all your points if you deviate from these instructions.
Hint: I set this problem before describing any algorithm for the minimum spanning tree problem.

Solution:

In order to convert multiplication into addition and maximisation to minimisation at the same time
to solve this problem, we convert all the weights of the edges E of G to be the negative log of their
previous value.

Since all the weights are guaranteed to be between 0 and 1, the log value will be a negative value. The
“safest” path, then would be the path whose sum of weights is closest to zero. By further negating
the values such that the negative log probabilities are now all positive, the problem becomes one of
minimization, where r now represents risk instead of safety.

Assuming the return value of Dijkstra’s algorithm is a list of distances of all the reachable nodes in the
input graph from the specified starting node t, we can iterate over the list of known interdimensional
portal nodes in the graph, and check if the distance from t to each of these nodes is less than r. If so,
we return true, otherwise the algorithm returns false after checking the cost of all the paths from t to
and interdimensional node in S.

Algorithm 4 OperationSaveWillByers(G,S, t, r)

1: E′ ← ∅ {Initialize an empty list of edges to store the − log edge weights}
2: for each e ∈ E ∈ G do
3: e′ ← − log(e) {Compute − log e ∀e ∈ E}
4: Add e′ to E′

5: end for
6: G′ = (V,E′) {Initialize a graph which contains the modified weights and all the nodes in G}
7: P ← Dijkstra’s(G′, E′, t) {Compute the shortest distances from all nodes v ∈ G to t}
8: for each known interdimensional portal node u ∈ S ⊂ V do
9: Pu ← P [u] {Pu is the distance from the interdimensional portal node to t, the sum of the weights of

each edge comprising the path u→ t}
10: if Pu < r then
11: return true {If the weight of any path from u→ t is less than r, then it is safe}
12: end if
13: end for
14: return false {If none of the paths satisfy the constraint imposed by r, return false, R.I.P. Will Byers}

5

