
Homework 4

CS 4104 (Spring)

Assigned on March 3, 2021.
Submit PDF solutions on Canvas
by 11:59pm on March 10, 2021.

My team-mate is: Joseph McAlister

Problem 1 (30 points) Let G = (V,E) be an undirected connected graph and let c : E → R+ be a function
specifying the costs of the edges, i.e., every edge has a positive cost. Assume that no two edges have
the same cost. Given a set S ⊂ V , where S contains at least one element and is not equal to V , let eS
denote the edge in E defined by applying the cut property to S, i.e.,

eS = arg mine∈cut(S)ce.

In this definition, the function “arg min” is just like “min” but returns the argument (in this case the
edge) that achieves the minimum. Let F be set of all such edges, i.e., F = {eS , S ⊂ V, S 6= ∅}. In
the definition of F , S ranges over all subsets of V other than the empty set and V itself. Answer the
following questions, providing proofs for all but the first question.

(i) (5 points) How many distinct cuts does G have? We will use the same definition as in class: a cut
is a set of edges whose removal disconnects G into two or more non-empty connected components.
Two cuts are distinct if they do not contain exactly the same set of edges. For this question, just
provide an upper bound.

Solution: In general, the upper bound of the number of distinct cuts that a graph G with n = |V |
can have is given by 2n − 2.

(ii) (8 points) Consider the graph induced by the set of edges in F , i.e., the graph G′ = (V, F ). Is G′

connected?

Solution: Yes. Since F includes all possible subsets of S ⊂ V , the induced graph would be a
layering of all the cheapest edges in the original set of edges E which, as given, connect G.

Proof: Assume for the sake of contradiction that the induced graph G′ = (V, F ) is not connected.

Then, there exists some node v ∈ V which is not connected any other node v′ ∈ V .

However, by definition, F is the set of all edges selected by the edge cut property, ranging over
all subsets of S ⊂ V .

Therefore, F necessarily includes the least costly edge in the chosen subset S = {v} where eS is
the cheapest edge connecting v to any other vertex in S − V .

If G was connected to begin with, then F will contain the cheapest edge connecting S = {v} to
S − V .

However, this statement contradicts our assumption that G′ is not connected, therefore G′ is
connected. �

(iii) (7 points) Does G′ contain a cycle?

Solution: No. Because of the edge cut property by which F is populated which will always
select the cheapest edge connecting S to S − V . In order for G′ to contain a loop, eS would have
to be incorrectly chosen based on the nodes in S.

Proof : Assume for the sake of contradiction that G′ could contain a cycle.

Then, for some S ⊂ V, S 6= ∅ there must exist some node v ∈ V − S for which the cost of the
cheapest edge that would connect it to an edge in our cut(S) is some positive, unique value ce.

This edge must be the cheapest connecting edge in order to be added to the connected component
of G′ that F describes.
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Assume that by adding this edge to F , then G′ will gain a cycle.

However, this edge will never be added, since there must exist some other edge connecting v ∈
V − S to S of cheaper or equal cost, since by adding v we gain a cycle.

However, this is a contradiction since we have already asserted that adding the edge with cost ce
connecting v to S would form a cycle.

Therefore G′ cannot contain a cycle. �

(iv) (5 points) How many edges does F contain?

Solution: |V |−1 edges. Since S is strictly subset of V , therefore, constructively, it is not possible
to contain more edges in F than there are nodes in V .

Proof: Assume for the sake of contradiction that G′ is connected and has no cycles, but has
|F | 6= |V | − 1.

Case 1: |F | < |V | − 1

We have shown above that G′ is connected, and if there are fewer than |V | − 1 edges in G′ then
G would not be connected. (This was shown in Homework 2.1). This is a contradiction since we
assumed that G′ is connected.

Case 2: |F | > |V | − 1

We have also shown that G′ does not contain any cycles, and if there are more than |V | − 1
edges, then there would be a cycle on G′. (This was also shown in Homework 2.1). This is a
contradiction since we assumed that G′ does not contain any cycles.

(v) (5 points) What conclusion can you draw from your answers to the previous statements?

Solution: G′ is an MST since it uses the minimum amount of the cheapest edges to fully connect
G.

Problem 2 (35 points) You return home for the weekend all agog with the exciting new ideas you have
discovered in the algorithms class. You tell your evil twin about the Minimum Spanning Tree (MST)
problem and the clever algorithms for computing it. Your sibling pooh poohs your new-found wis-
dom and proposes the following simple algorithm on to compute the MST of an undirected graph G,
assuming that no two edges have the same cost.

1. Maintain a set T of edges. Initially T is empty.

2. Process the edges of E in any order.

3. For each edge e ∈ E,

(a) Add e to T .

(b) If T contains a cycle, delete e from T .

Something seems fishy. Could this algorithm really compute the MST? Show up your sibling by fixing
the algorithm so that T is indeed the MST at the end and prove that the modified algorithm computes
the MST of G. What you should include in your solution is both the corrected algorithm and its proof
of correctness.

Notes: (a) The algorithm is not the same as Kruskal’s algorithm since it processes the edges in any
order. In contrast Kruskal’s algorithm processes the edges in increasing order of cost. (b) In your fix,
you decide not to sort the edges by cost or use any data structure such as the priority queue to sort
the edges by cost. (c) We are interested only in proving the correctness of this algorithm. We are not
interested in its running time. Most of the points are for a clear and complete proof of correctness.

Hint: I am providing an elaborate hint here. Your proof of correctness should show that at the end
of the algorithm, T is an MST. Therefore, you have to prove all three points implied by the phrase
“Minimum Spanning Tree.” Prove each of these statements:

Solution: The modification I would make to my nefarious twin’s algorithm would be to add a for
loop to step 3 part (a) as follows:

1. Maintain a set T of edges. Initially T is empty.
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2. Process the edges of E in any order.

3. For each edge e ∈ E,

(a) Add e to T .

(b) If T contains a cycle, then delete the edge with the highest cost in the cycle accordingly:

Input: cycle the list of edges in a cycle
/* e is the edge we just added to T */

1 max edge ←e
/* find the edge with the highest cost in the cycle */

2 foreach edge ei ∈ cycle do
3 if c(ei) > c(max edge) then
4 max edge ←ei
5 end

6 end
7 Remove max edge from T

(a) T does not contain a cycle. This proof should be easy.

Solution: By construction, it is not possible for T to contain a cycle since, on line 7 of the
adjusted algorithm, one edge in a cycle is deleted whenever a cycle is created, thus breaking said
cycle.

(b) T is spanning, i.e., connects all vertices in G. This part can be challenging. Consider an
arbitrary subset S of V . It is enough to prove that at the end of the algorithm, T contains at
least one edge in cut(S).1 As the modified algorithm progresses, what can you show about that
edges in cut(S) that are also in T? Informally, I am suggesting that you imagine the algorithm is
running in the background while you focus your attention on the edges in cut(S). The algorithm
will process these edges in some order. Think about this order to show that at the end of the
algorithm, T contains at least one edge in cut(S).

Solution: For any subset S ⊂ V , at least one edge in cut(S) will be contained in T . As the
adjusted algorithm processes all nodes in G, it is guaranteed that at least one of the nodes in T
will be connected by an edge in cut(S).

Proof: Assume for the sake of contradiction that T does not contain any edges in cut(S).

The presented algorithm process all edges in E and adds them (and presumably their correspond-
ing nodes) to T provided that they do not create a cycle. If a cycle is created, the edge of maximal
cost in the cycle will be deleted from T .

We know that at some point an edge e ∈ cut(S) will processed.

From this point onward, e can only be removed from T if a cheaper edge is found that also
connects T to the node that e connected.

In either case (e does or does not get replaced by a cheaper edge), e or its replacement will be
connected to T by an edge in cut(S).

However this contradicts our assumption that T will not contain any edges in in cut(S), therefore
T will contain at least on edge in cut(S).

(c) T is an MST. If you have proven the first two parts, then you know that T is a spanning tree.
How many edges can it contain? If you modified the algorithm correctly, then what can you say
about the edges that you did not include in T? Remember that the algorithm has processed every
edge in G. Now combine what know so far with what you proved in part (v) of Problem 1.

Solution: T is an MST.

We have shown that T is minimum insofar as it contains no cycles (using the minimum number
of edges to connect the graph G), and all connections are of minimal cost, as, since all edges

1For every subset S, if T contains at least one edge in cut(S), then T is connected. You may assume this fact.
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are processed, any cheaper connection which forms a cycle will result in the more expensive edge
being removed from T .

We know that T is spanning since our algorithm will try to add all edges to T , guaranteeing that
the node will be connected (only removing edges that create cycles, but none that simply connect
G).

We know that T is a tree since it has |V | − 1 edges (per problem 1, and T having no cycles, but
connecting all the nodes of G).

Therefore T is an MST.

Problem 3 (35 points) You are given two sets of n points. The first set of points {p1, p2, . . . , pn} lies on
the line y = 0. The other set of points {q1, q2, . . . , qn} lies on the line y = 1. None of these point sets is
sorted by x-coordinate. Now construct a set of n line segments as follows: for each 1 ≤ i ≤ n, connect
pi to qi. Develop a divide-and-conquer algorithm that computes how many pairs of these line segments
intersect. Your algorithm should run in O(n log n) time.

Solution: Let P = [p1, p2, ..., pn], and Q = [q1, q2, ..., qn].

We begin by sorting P according to the x-coordinate in O(n log n) time and arranging the points in Q
such that all of the indices match that of their corresponding points in P .

We can then treat inversions in Q is intersections between pairs of line segments. That is, for indices
i < j, an inversion/intersection occurs when Q[i] > Q[j].

Then, we can apply a Divide and Conquer strategy using modified versions of the merge and count

and sort and count algorithms to find the number of intersections in O(n log n) time.

First, we apply the sort and count algorithm on recursive halves of Q to sort and count inversions in
partitions.

Then we count inversions that occur across partitions using the merge and count algorithm.

Algorithm 1: merge and count

Input: A,B: two sorted lists
Output: L: the merged list of A, B and r the number of inversions/intersections

1 r ← 0
2 L← [|A|+ |B|]
3 pointer a, pointer b ← 0, 0
4 while A 6= ∅ and B 6= ∅ do
5 ai, bi ← A[pointer a], B[pointer b]
6 if ai < bi then
7 Add ai to L
8 pointer a ++

9 else
10 Add bi to L
11 pointer b ++
12 r+ = (|A|− pointer a)

13 end

14 end
15 Add remainder of non-empty list to L
16 return r, L
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Algorithm 2: sort and count

Input: L: A list of x-coordinates for the points in Q
Output: The sorted list S and the number of inversions in L

1 n← |L|
2 if n ≤ 1 then
3 return 0
4 end
5 A← L[0, dn/2e]
6 B ← L[dn/2e+ 1, n]
7 (rA, A) = sort and count(A)
8 (rB , B) = sort and count(B)
9 (r, L) = merge and count(A,B)

10 return r = rA + rB + r, L

Proof of Correctness: Every inversion in Q (and corresponding intersection in line segments formed by
connecting points in Q to P ) is counted exactly once, and no non-inversions are counted.

Base case: n = 1, there are no inversions.

Inductive hypothesis: the presented algorithms count the number of inversion correctly for all set
of n− 1 or fewer line segments

Inductive step: Consider an arbitrary inversion of points i, j ∈ Q such that i < j, but xi < xj .
This inversion is counted in precisely three mutually exclusive locations:

1. i, j ≤ bn/2c : xi, xj ∈ A is accounted for by rA by the inductive hypothesis

2. i, j ≥ dn/2e : xi, xj ∈ B is accounted for by rB by the inductive hypothesis

3. i ≤ bn/2c, jdn/2e : xi ∈ A, xj ∈ B is accounted for when xj is output by merge and count

Furthermore, no non-inversion are counted as when any xj ∈ B is added to the merged list, it is smaller
than all remaining elements in A, since A is sorted.

Proof of runtime complexity :

The running time of the presented algorithm is O(n log n) as the modifications to the standard
O(n log n) merge sort algorithm which add the count functionality are all constant time operations.
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