
Homework 5

CS 4104 (Spring 2021)

Assigned on March 29, 2021.
Submit PDF solutions on Canvas by the

11:59pm on April 7, 2021.

My team-mate is: Joseph McAlister

Problem 1 (20 points) In this problem, you will analyse the worst-case running time of weighted interval
scheduling without memoisation. Recall that we sorted the n jobs in increasing order of finish time
and renumbered these jobs in this order, so that fi ≤ fi+1, for all 1 ≤ i < n, where fi is the finish time
of job i. For every job j, we defined p(j) to be the job with the largest index that finishes earlier than
job j. Consider the input in Figure 6.4 on page 256 of your textbook. Here all jobs have weight 1 and
p(j) = j − 2, for all 3 ≤ j ≤ n and p(1) = p(2) = 0. Let T (n) be the running time of the dynamic
programming algorithm without memoisation for this particular input. As we discussed in class, we
can write down the following recurrence:

T (n) = T (n− 1) + T (n− 2), n > 2

T (2) = T (1) = 1

Prove an exponential lower bound on T (n). Specifically, prove that T (n) ≥ 1.5n−2, for all n ≥ 1.

Solution: We begin by “unrolling” the recurrence into an assumed exponential lower bound:

T (n) = T (n− 1) + T (n− 2)

≤ cn−1 + cn−2

≤ cn

From here we can substitute 1.5 for c. We must show that T (n)
1.5n−2 > 1 for all n ≥ 1.

The base case of n = 1 is trivial:

1

CS 4104 (Spring 2021): Homework 5

T (1)

1.51−2
=

1

1.5−1
≥ 1

= 1.5 ≥ 1

For the inductive hypothesis and step, we return to the ≥ cn term.

Inductive Hypothesis: the lower bound is satisfied if T (n) ≥ cn.

Inductive Step: This statement is true if cn ≥ cn−1+cn−2. Algebraically, we can rephrase this statement

as c2 − c− 1 ≥ 0 which is true for all values greater than or equal to the golden ratio: g = 1+
√
5

2 (the
smallest value of c which satisfies the statement is g).

That is, for c = 1.5, c ≤ g, 1.5n−2 is a lower bound for T (n).

Problem 2 (35 points) Solve exercise 1 in Chapter 6 (pages 312–313) of your textbook.

Let G = (V,E) be an undirected graph with n nodes. Recall that a subset of nodes is called an
independent set if no two of them are joined by an edge. Finding large independent subsets is difficult
in general; but here we’ll see that it can be done efficiently if the graph is “simple” enough.

Call a graph G = (V,E) a path if its nodes can be written as v1, v2, ..., vn, with an edge between vi
and vj if and only if then numbers i, j differ by exactly 1. With each node vi, we associate a positive
integer weight wi.

Consider, for example, the five-node path drawn in Figure 6.28. The weights are the numbers drawn
inside the nodes. The goal in question is to solve the following problem:

Find an independent set in a path G whose weight is as large as possible

1. Give an example to show that the following algorithm (“heaviest first”) does not always find an
independent set of maximum total weight.

Solution: An input of nodes with weights [3, 5, 3] would make this algorithm fail as the heaviest
independent set would have a weight of 6 (taken from the first and third nodes), whereas the
algorithm would select 5 and terminate.

2. Give an example to show that the following algorithm (“even odd”) also does not always find an
independent set of maximum total weight.

Solution: An input of nodes with weights [5, 1, 3, 5] would make this algorithm fail as the
heaviest independent set would have a weight of 10 (taken from the first and last nodes), whereas
the algorithm would select the “odd” nodes of weights 5 + 3 = 8 and terminate.

3. Give an algorithm that takes an n-node path G with weights and returns an independent set of
maximum total weight. The running time should be polynomial in n independent of the values
of the weights.

Solution: The strategy is to select nodes by weight, recursively choosing the maximum between
the previous node and the current node as well as the node before the previous node:

OPT (i) = max(OPT (i− 1), wi + OPT (i− 2))

OPT (1) = w1, OPT (2) = w2

2

CS 4104 (Spring 2021): Homework 5

Algorithm 1: max independent set(L)

Input: G a list of node weights in order corresponding to the n-node path
Output: S the indices of the node weights in L that correspond to the maximum independent set
// M is the memoisation cache array of OPT values

1 M ← []
// S the set of boolean values corresponding to whether or not a node belongs in

the independent set

2 S ← {}
3 for 1 ≤ i ≤ |L| do
4 wi ← L[i]

// The base case for the OPT recurrence

5 if i ≤ 2 then
6 M [i]← wi

7 S[i] ← true

8 else
// Implementation of the OPT recurrence

9 if wi + M [i− 2] > M [i− 1] then
10 M [i]← wi + M [i− 2]
11 S[i] ← true

12 else
13 M [i]←M [i− 1]
14 S[i] ← false

15 end

16 end

17 end
// Trace through S backwards to validate/prune the output

18 S′ ← {}
19 n← |L|
20 while n > 0 do
21 if S[n] == true then
22 Add n to S′

23 n← n− 2

24 else
25 n← n− 1
26 end

27 end
28 return S′

Proof of Correctness:

The strategy employed by the presented algorithm is to compare the weights of the independent
sets formed by taking either the current node and the node two “connections” prior (in order
to maintain independence). Then, we trace backwards through the resultant set S to prune
the invalid node indices from being considered when evaluating the entire path. In this way we
ensure that the resultant set of nodes is correct insofar as it does not violate the definition of an
independent set on the input path.

Secondly, we know that the algorithm is correct in terms of maximum weight as the OPT values
are calculated iteratively over the the nodes such that the implicit lookup table is populated from
low node indices to high, and then selected in reverse order. In this way, the max operator is
able to rapidly compute the optimal values for each sub-set of the input path, then take indices
“marked” from highest (most correct) to lowest, meaning that OPT (n) will be the optimal value
for the complete n-node path.

Proof of Runtime Complexity :

The for loop iterates over all the nodes in O(n) time, building the OPT lookup table.

3

CS 4104 (Spring 2021): Homework 5

Though the while loop necessarily skips some of the nodes in order to guarantee independence in
the resultant set S′, asymptotically this still takes O(n) time.

Therefore the runtime complexity is O(n).

Problem 3 (45 points) Many object-oriented programming language implement a class for manipulating
strings. A primitive operation supported by such languages is to split a string into two pieces. This
operation usually involves copying the original string. Hence, it takes n units of time to split a string
of length n into two pieces, regardless of the location of the split. However, if we want to split a string
into many pieces, the order in which we make the splits can affect the total running time of all the
splits.

For example, suppose we want to split a 20-character string at positions 3 and 10. If we make the
first cut at position 3, the cost of the first cut is the length of the string, which is 20. Now the cut
at position 10 falls within the second string, whose length is 17, so the cost of the second cut is 17.
Therefore, the total cost is 20 + 17 = 37. Instead, if we make the first cut at position 10, the cost of
this cut is still 20. However, the second cut at position 3 falls within the first string, which has length
10. Therefore, the cost of the second cut is 10, implying a total cost of 20 + 10 = 30.

Design an algorithm that, given the locations of m cuts in a string of length n, finds the minimum
total cost of breaking the string into m + 1 pieces at the given locations, minimised over all possible
ways of breaking the string at the m locations.

Let us define some notation to help develop the solution. Sort the locations of the m cuts in increasing
order along the length of the string. Let ci be the location of the ith cut, 1 ≤ i ≤ m. Set c0 = 1, and
cm+1 = n, locations at the beginning and the end of the string, respectively. Note that we can assume,
without loss of generality, that no cuts have been specified at locations 1 and n, since making these
cuts incurs no cost.

Hint: Suppose you make the first cut at some location cj , where 1 ≤ j ≤ m. This cut will split the
string into two sub-strings. Consider where you may make the next cut in each sub-string. What
types of sub-problems are you creating? In other words, each sub-problem is a sub-string: how do you
denote or characterise this sub-string? Does it look like a sub-problem in weighted interval scheduling,
segmented least squares, or RNA secondary structure? Figuring out the right set of sub-problems will
go a long way towards helping you solve the problem. It will also help to define some notation for each
sub-problem and for the cost of solving it.

Solution:

Proof of Correctness / Description

The strategy is to recursively iterate over every cut mi in the input list which we label M , making that
cut, computing the cost values as the sum of the cuts in the respective left and right halves of the sub
strings until and performing the same process on the two resultant sub strings with the cuts present
on their ranges until no more cuts can be made. We repeat this process for all m cuts, keeping track
of which cut gives the minimum for each possibility.

Formally, we can present this recurrence as the following:

OPT (n,M) = min
c∈M

(
n + OPT (c, [cj |cj < c]) + OPT (n− c, [cj |cj > c])

)
where n is the length of the string, n+OPT (c, [cj |cj < c]) is the cost of making the cuts remaining in
the left sub string, and OPT (n− c, [cj |cj > c]) the cost of the remaining cuts in the right sub string.

We observe that each cut creates two sub problems: sub strings where a cut or list of cuts may exits. We
desire the minimum cost from cutting each sub string similar to the segmented least squares problem.

Though not implemented in the presented algorithm, we can utilize memoisation to cache the costs of
making different cuts to improve the runtime of this approach by saving the cost of executing a list of
cuts to be fetched / referenced later on.

4

CS 4104 (Spring 2021): Homework 5

Algorithm 2: min cost cuts(n,M)

Input: n the length of the input string, or sub string, M the list of locations of cuts
Output: The minimum total cost of breaking the string into m + 1 pieces at the given locations
// If there are no cuts to be made, the cost is 0

1 if M = [] then
2 return 0
3 end
4 min cost ←∞
5 foreach cut c ∈M do

// Split the remaining cuts into two lists

6 left cuts ← [cj |cj < c]
7 right cuts ← [cj |cj > c]

// cost of making the all the cuts to left of c on the sub string formed by

making cut c
8 left cost = min cost cuts(c, left cuts)

// cost of making the all the cuts to right of c on the sub string formed by

making cut c
9 right cost = min cost cuts(n− c,right cuts)

10 total cost = n + left cost + right cost
// Keep track of the minimum cost

11 if total cost < min cost then
12 min cost ← total cost
13 end

14 end
15 return min cost

Proof of Runtime Complexity

Let T (n) be the running time of this algorithm.

the main loop iterates m times, with each recursive call within the loop running fewer than m times
according to the following relationship:

T (n) =
∑

1≤j≤m

∑
1≤i≤j

O(j − i) = O(n3) time.

5

