
Midterm Examination

CS 4104 (Spring 2021)

Assigned: March 15, 2021.
PDF solutions due on Canvas by 11:59pm on March 26, 2021, i.e., you have 11 days.

Instructions

• The Graduate Honor Code applies to this examination. Unlike in the case of homework, you
must work on the examination individually.

• You are not allowed to consult sources other than your textbook, the slides on the course web page,
your own class notes, the TAs, and the instructor. In particular, do not use a search engine.

• Do not forget to typeset your solutions. Every mathematical expression must be typeset as a mathe-
matical expression, e.g., the square of n must appear as n2 and not as “nˆ2”. You can use the LATEX
version of the homework problems to start entering your solutions.

• Do not make any assumptions not stated in the problem. If you do make any assumptions, state them
clearly, and explain why the assumption does not decrease the generality of your solution.

• You must also provide a clear proof that your solution is correct (or a counter-example, where appli-
cable). Type out all the statements you need to complete your proof. You must convince us that you
can write out the complete proof. You will lose points if you work out some details of the proof in your
head but do not type them out in your solution.

• If you are proposing an algorithm as the solution to a problem, keep the following in mind (the strategies
are based on mistakes made by students over the years):

– Describe your algorithms as clearly as possible. The style used in the book is fine, as long as your
description is not ambiguous. Explain your algorithm in words. A step-wise description is fine.
However, if you submit detailed code or pseudo-code without an explanation, we will not grade
your solutions.

– Do not describe your algorithms only for a specific example you may have worked out.

– Make sure to state and prove the running time of your algorithm. You will only get partial credit
if your analysis is not tight, i.e., if the bound you prove for your algorithm is not the best upper
bound possible.

– You will get partial credit if your algorithm is not the most efficient one that is possible to develop
for the problem.

• In general for a graph problem, you may assume that the graph is stored in an adjacency list. If n is the
number of nodes and m is the number of edges in the graph, then the input size is m+ n. Therefore,
a linear time graph algorithm will run in O(m+ n) time.

Good luck!

1



CS 4104 (Spring 2021): Midterm Examination

Problem 1 (15 points) Let us start with some quickies. For each statement below, say whether it is true
or false. You do not have to provide a proof or counter-example for your answer.

1. Every bipartite graph is a tree.

Solution: False

2.
∑n

i=1 i log i = Θ(n2 log n).

Solution: True

3. Dijkstra’s algorithm may not terminate if the input graph contains a negative-weight cycle, i.e.,
a cycle such that the sum of the weights of the edges in the cycle is less than zero.

Solution: False

4. In a directed graph, G = (V,E), each edge has a weight between 0 and 1. To compute the length
of the longest path that starts at u and ends at v, we can change the weight of each edge to be
the reciprocal of its weight and then apply Dijkstra’s algorithm. Here, the length of a path is the
sum of the weights of the edges in the path.

Solution: False

5. Suppose π is the shortest s-t path in a directed graph. Then, there can be two nodes u and v in
π such that length of the portion of π connecting u to v is larger than the length of the shortest
u-v path in the graph. Here π is the name I am giving to the shortest path between s and t; it is
not the mathematical constant.

In the figure below, π is the path composed of black and red edges. As an example, I have marked
two nodes u and v in π and denoted the portion of π connecting u to v using red edges. The blue
edges denote another path from u to v in the graph. The figure does not indicate edge costs. If
you answer “yes” to this question, you are saying that there are graphs where the length of the
red path can be larger than the length of the blue path (knowing that π is the shortest s-t path).
If you say “no”, then you are saying that for every pair of nodes u and v in π, the length of the
red path is always less than or equal to the length of the blue path.

Solution: False

Problem 2 (15 points) A connected, undirected graph G contains k cycles. Each edge in G has a distinct
weight. Develop an algorithm to compute the minimum spanning tree of G in O(mk) time. You may
assume that k < log n, so that the running time that I am seeking is faster than what you would obtain
using Prim’s or Kruskal’s algorithm.

Solution:

The strategy is to process the edges in any order, add each edge to a set of edges representing the
MST, check if adding that edge creates a cycle, and if so, remove the edge with max cost in the cycle
using a modified DFS. Repeat this process k times, after which point we know that all the cycles have

2



CS 4104 (Spring 2021): Midterm Examination

been handled and the remaining edges must be in the MST.

Algorithm 1: speedy MST(G)

Input: G a connected, undirected graph, k the number of cycles in G
Output: T the set of edges representing the MST of G
// Initialize an empty set of edges representing the MST

1 T ← {}
// A counter to keep track of how many cycles have been processed

2 c← 0
3 for edge e ∈ G do
4 Add e to T

// Only check for a cycle if we haven’t processed k cycles

5 if c < k then
6 (u, v)← e

// find cycle is just a modified DFS which returns the list of edges

comprising a cycle

7 C ← find cycle(T, u, v)
// find cycle returns an empty list is no cycle is found

8 if C 6= [] then
9 k++

10 max edge ← e
// Remove the edge of max cost from C ⊆ T

11 for edge i ∈ C do
12 if cost(i) > cost(max edge) then
13 max edge ← i
14 end

15 end
16 Remove max edge from T

17 end

18 end
19 return T

20 end

Proof of Correctness

Claim: T is an MST of G.

In order to prove that T is an MST, we must show that:

1. T does not contain a cycle.

This is true by construction as the presented algorithm checks if adding and edge e to T creates
a cycle, and if so, then precisely one edge in that cycle is removed from T .

2. T is spanning: it connects all vertices in G.

This is also true by construction as all edges in G are added to T . Edges are only removed if they
form a cycle in T .

3. T is Minimum: it connects G with the cheapest edges possible.

This is also true by construction as it is only permissible to remove an edge from T if it forms a
cycle, and in that case, the edge with the maximum cost c(e) is removed.

As the presented algorithm conforms to these three criteria, T will be an MST of G.

Proof of Runtime Complexity

The main loop starting on line 3 of the algorithm accounts for O(m) as it processes every edge in G.

We limit the number of remaining operations by the term k by only checking for a cycle in T if c < k.
If we have not processed all the cycles in G, then the modified DFS, find cycle, runs in linear time

3



CS 4104 (Spring 2021): Midterm Examination

O(m+ n), and the subsequent edge removal process (which can only occur k times) runs in less than
m time.

Additionally, we can observe that the worst case scenario of an edge being added to T creating a cycle
involving all the other edges in T can only occur once, so on average find cycle will be faster than
O(m + n), since the edges and nodes involved in the modified DFS will usually be a strict subset of
the E, V comprising G.

So, the inner loop(s) starting with the invocation of find cycle on lines 7 and the edge removal loop
starting on line 8, will take O(m) +O(m+n) and will only be executed k times, for O(k(m+n)) time.

Therefore, the overall runtime complexity of the presented algorithm will be O(mk).

Problem 3 (10 points) Consider the problem of minimising lateness that we discussed in class. We are
given n jobs. For each job i, 1 ≤ i ≤ n, we are given a time t(i) and a deadline d(i). Let us assume
that all the deadlines are distinct. We want to schedule all jobs on one resource. Our goal is to assign
a starting time s(i) to each job such that each job is delayed as little as possible. A job i is delayed if
f(i) > d(i); the lateness of the job is max(0, f(i)− d(i)). Define

1. the lateness of a schedule as maxi

(
max

(
0, f(i)− d(i)

))
and

2. the delay of a schedule as
∑n

i=1

(
max

(
0, f(i)− d(i)

))
.

Note that although the words “lateness” and “delay” are synonyms, for the purpose of this problem
we are defining them to mean different quantities: the lateness of a schedule is the maximum of the
latenesses of the individual jobs, while the delay of a schedule is the sum of the latenesses of the
individual jobs.

Consider the algorithm that we discussed in class for computing a schedule with the smallest lateness:
we sorted all the jobs in increasing order of deadline and scheduled them in this order. We proved that
the earliest-deadline-first algorithm correctly solves the problem of minimising lateness. If we were to
use the same proof to try to demonstrate that the algorithm correctly solves the problem of minimising
delay, what is the first point where the proof breaks down? Explain why the proof is incorrect here.

Solution: The EFT proof breaks down when being applied to the problem of minimizing delay when
jobs or sorted in terms of increasing deadline.

Consider the following two schedules as a proof by contradiction. The first schedule is one that is
produced by the EFT algorithm:

Figure 1: This EFT schedule has a lateness of 10, and a delay of 40.

And this second schedule produced by ordering jobs in increasing order of duration t(i):

4



CS 4104 (Spring 2021): Midterm Examination

Figure 2: This schedule has a lateness of 14, but a delay of 26.

The proof breaks down due to its reliance on swapping inversions not increasing the overall lateness.
This property of inversions with respect to finishing times does not hold for overall lateness.

Whereas the green job is inverted in terms of its finishing time with all of the preceding jobs (blue, tan,
cyan) in the second schedule, and iteratively swapping it with those jobs does not increase the overall
lateness of the schedule, the overall delay of the schedule does increase when fixing these inversions.

Because the proof of correctness for the EFT algorithm relies solely on the max lateness of all jobs
and not the cumulative lateness of all jobs, the proof breaks down during the very first step of the
algorithm which necessitates ordering the jobs by their deadlines.

Problem 4 (20 points) You are given a list of n real numbers (the list can contain both positive and negative
numbers). Give an efficient algorithm to determine the contiguous sub-list with the largest sum. More
formally, suppose the numbers are l1, l2, . . . , ln−1, ln. Your mission, should you choose to accept it, is
to compute two indices 1 ≤ i ≤ j ≤ n such that

s(i, j) =

j∑
k=i

lk

is the largest over all possible choices of i and j. Note that to compute s(i, j) we sum up all the
numbers between indices i and j inclusive.

Hint: I am looking for an O(n log n) time algorithm. It is possible that you have seen this problem
before and are aware of a solution with an O(n) running time. If you present this algorithm, it is even
more essential than ever that you prove its correctness. This proof is quite complex. I will not award
any points for an O(n) algorithm without a complete proof of correctness.

Solution:

We employ a divide and conquer strategy similar to the solution for counting inversions in an array,
or intersections between two sets of connected points forming line segments.

We recursively divide the array into two halves until we reach a base case with just a single element.
Then we recursively “merge” sub lists, taking the indices and maximum value selected from either the
left or right half of the sub list, or the sub list that spans both halves.

The tricky conquer step is the “merge” step where we find the largest contiguous sub-list which spans

5



CS 4104 (Spring 2021): Midterm Examination

over two halves. This is accomplished by working out from the middle of the two merged halves.

Algorithm 2: indices max sub list(S, lo, hi)

Input: S the sub list, lo, hi the indices in the sub list to be searched
Output: sum, i, j the value and indices defining the range of the maximum sub list in S

1 if lo = hi then
2 return S[lo], lo, lo
3 end
4 mid ← (lo+ hi)/2
// calculate values, indices for left half

5 l sum, l lo, l hi ← indices max sub list(S, lo, mid)
// calculate values, indices for right half

6 r sum, r lo, r hi ← indices max sub list(S, mid+1, hi)
// calculate values, indices for any sub lists spanning halves

7 s sum, s lo, s hi ← indices max spanning sub list(S, lo, mid, hi)
// Return the sum and indices corresponding to the maximum value of a contiguous

sub list in S
8 return max

sum
((l sum, l lo, l hi), (r sum, r lo, r hi), (s sum, s lo, s hi))

Algorithm 3: indices max spanning sub list(S, lo,mid, hi)

Input: S the sub list, lo,mid, hi the indices in the sub list to be searched
Output: The largest sum of contiguous elements in S, and the indices corresponding to this range

1 l sum, r sum ← −∞,−∞
2 sum ← 0
3 l ind, r ind ← 0, 0
4 for i = mid; i ≥ low; i−− do
5 sum += S[i]
6 if sum > l sum then
7 l sum = sum
8 l ind = i

9 end

10 end
// reset the sum value

11 sum ← 0
12 for j = mid+ 1; j ≤ hi; j + + do
13 sum += S[j]
14 if sum > r sum then
15 r sum = sum
16 r ind = j

17 end

18 end
// Return the largest sum that spans outward from the midpoint

19 return (l sum + r sum), l ind, r ind

Proof of Correctness Claim: The indices corresponding to the largest contiguous sub array in the input
list is found.

We begin by proof by induction:

Base case: the sub-list has a size of 1, the largest sub array is the only element, and the indices
returned are the index of that element in the sub-list

Inductive Hypothesis: the presented algorithms find the largest indices and value of the contiguous
sub-array in the list for all sub lists of size n.

Inductive Step: There are three cases to consider:

6



CS 4104 (Spring 2021): Midterm Examination

1. The list contains all non-negative values: the indices span the entire range of the sub list
since the indices max spanning sub list finds the largest contiguous sum from the
middle out, all values will be included/summed, and the resultant indices will be 0, n.

2. The list contains all negative values: only one value, and its corresponding index will be
returned as the indices max sub list function will return the max of the three options
between the max left, max right, and max spanning list, which will necessarily be the
single largest number in the left or right half after the initial split.

3. The list contains a mixture of positive and negative values: The largest contiguous halves
will be found by the indices max sub list function, and the indices max spanning sub list

function will search from the middle out, stopping once a negative value is found. This
procedure will chain through the “merging” steps after each recursive call and once again,
the indices corresponding to the maximum value will be found by searching from the
middle, outwards.

As these two algorithms will recursively take the maximum value and the corresponding
indices of the three available options, the resultant values are guaranteed to be the largest
contiguous sublist and the indices marking that range.

Proof of Runtime Complexity

The lists will be split log n times in the indices max sub list function, and in the worst case all
values in a sub list will be traversed in the indices max spanning sub list function accounting for
n operations to determine if two halves of a sub list contain a contiguous segment with a larger sum
than either half individually.

Therefore, the running time complexity of this algorithm is O(n log n).

Problem 5 (40 points) This summer, you will be working at a synthetic biology company. The company
specialises in creating cocktails of microbes (e.g., bacteria and fungi) to synthesize new antibiotics in
an effort to combat infectious diseases. Their idea is to start with a compound that is cheap to make
and to convert this compound into the desired antibiotic (which is another compound) using a series
of chemical reactions that occur inside microbes. If you wonder why microbes are involved, know that
several naturally occurring antibiotics are produced by microbes.

Figure 3: An illustration of microbes and reactions. The red microbe can perform three reactions, the green
microbe is capable of four reactions, and the blue microbe has three reactions. A black shape surrounds a
compound that can be secreted if it is made. Starting from c1, the red and green microbes can together make
c8 since c4 can be secreted by the red microbe and absorbed by the green microbe. Instead, if we started
with c3, then the blue and green microbes could synthesise c8. (You may notice another way to make c8
starting from c1.)

Here is how the science works. A given species of microbe has the ability to synthesize specific com-
pounds. The microbe does so using reactions that convert one compound into another. For example,
in Figure 3, where the arrow sign means conversion, the red microbe can convert the compound c1 into
the compounds c2 or c3 (the first two reactions). It can also convert the compound c2 to c4. A microbe
can also chain together reactions. Therefore, if the red microbe is provided the compound c1, then it

7



CS 4104 (Spring 2021): Midterm Examination

can make c2, and thereafter use c2 to make c4. These chains of reactions can be arbitrarily long, as
long as all the reactions can take place in that microbe.

Different microbial species can perform different sets of reactions and hence produce different sets of
compounds. For instance, the only reaction that can use c4 to form another compound exists in the
green microbe. If we started with c1 in the red microbe, produced c4 in this microbe, and then somehow
managed to “ship” c4 to the green microbe, then we could obtain the compounds c6, c7, and c8 (via
c6). And c8 may be the antibiotic we desire!

How can we give the green microbe some c4? Fortunately, biology comes to our rescue once again.
Microbes can secrete some compounds to the environment and can absorb some compounds from the
environment. For example, if c4 is such a compound, then (starting from c1), the red microbe can
make and secrete c4. Subsequently, the green microbe can absorb c4 and use it to make c6, c7, and c8.

Only a subset of all compounds can be secreted and absorbed. The reason is that each microbe acts
like a closed bag (the solid boundaries in the figure denote the cell wall of the microbe). Therefore, in
the figure, if the red microbe has c1, then it can make c2 and then c4. Since the red microbe’s bag is
closed, c4 should stay inside the red microbe. However, if c4 has the right chemical properties and it
can be secreted and absorbed, then c4 will diffuse out of the red microbe and enter the green microbe.
Inside the green microbe, c4 can start new reactions that result in the production of c8. As another
example, consider c3. Starting with c1, the red microbe can make c3. But c3 cannot be secreted. If it
were, the blue microbe could absorb it, giving an alternate path to c8.

There are only two more rules. Each reaction takes some time to complete; different reactions can
have different times. Secretion and ingestion of a compound also take time; these times vary from one
compound to another.

What your company gives you as input are the following:

(i) the names of the microbes M1,M2, . . .Mk,

(ii) the set C of compounds,

(iii) for each microbe Mi, where 1 ≤ i ≤ k, a set Si of reactions and their times,

(iv) the subset S ⊆ C of compounds that can be secreted and absorbed, and for each compound c ∈ S,
a secretion time sc and an absorption time ac. Note that sc may not be equal to ac and different
compounds may have different absorption/secretion times.

(v) a source compound σ ∈ C and a target compound τ ∈ C. You can assume that the starting
compound σ can be absorbed by any microbe in zero units of time.

To be clear about item (iii), for each microbe Mi, a reaction in Si is of the form (c, d, t). This triple
represents a reaction where compound c ∈ C is converted to compound d ∈ C in time t units in the
microbe Mi. This triple says that if microbe Mi contains the compound c, then it can convert it into
compound d in t units of time. Therefore, a reaction indicates a possible transformation that a microbe
can execute. In this case, Mi must somehow obtain c before it can convert it to d. If the microbe has
no access to c, then the reaction from c to d cannot take place inside Mi .

The sizes of the sets Si can vary from microbe to microbe.

Finally, we can state the problems the company asks you to solve:

1. Starting from compound σ, can the microbes produce the target compound τ? If the
answer is yes, which set of reactions accomplishes this task in the least amount of time?

2. Solve the first problem in the special case when every reaction in every microbe takes
one unit of time and for every compound in S, the total secretion and absorption time
is two units.

Note: The problem is not difficult to solve using techniques you have learnt so far in this course. I
am looking for clear descriptions of the approach and careful attention to the running time. There are
many elements in the input. You have to decide what factors will govern the size of the input and,

8



CS 4104 (Spring 2021): Midterm Examination

therefore, the running time of your algorithm. For part 2, I am expecting a faster algorithm than for
part 1. And I request you again: please do not write code!

Solution:

1. We can solve this problem by modeling the components of the biological setting as a weighted,
directed graph according to the following relationships:

• nodes: compounds c ∈ C
• edges: reactions within a microbe Si, secretions and absorptions between microbes Mi →Mj

• edge weights: reaction times within a microbe also from Si, the sum of secretion and absorp-
tion times sc + ac

If we model the problem in this way, we can run Dijkstra’s on the resultant graph to determine
if there is a path (or chain of reactions) from σ → τ by checking if τ ∈ S produced by Dijkstra’s.

If the compound can be produced, then we can find the shortest path from one compound σ to
our target compound τ , where the edges along this path are the set of reactions (and necessary
microbial secretions and absoprtions) needed to synthesize the target compound.

Using this technique, the size of the input is governed by the the size of the compounds C ≡ V ,
as well as the edges comprised of reactions, secretions and absorptions: {S, S1, S2, ..., Sk} ≡ E.
Therefore, the running time of the solution is the same Dijkstra’s: O(m log n) with the number
of possible reactions, secretions, and absoprtions being the dominating factor.

2. For this special case of nearly uniform edge weights, we can achieve linear runtime by splitting
the edges modeled by secretions and absorptions into two edges of weight 1. Splitting the edges
would take O(m) time as we have to iterate over each edge and check if it connects two distinct
microbes. If so, then we split the edge and add a dummy node in between the microbes that
maintains the same connection as before.

Once this step has been completed, we can simply perform a BFS on the modified graph since all
of edges have the same weight, and therefore weights can functionally be ignored.

The runtimes of our edge-splitting and subsequent BFS are O(m) +O(m+n) = O(m+n), linear
over the size of the graph, and better than the solution to problem 1.

The correctness of both of these approaches follows from the correctness of of Dijkstra’s and BFS,
respectively.

As we have modeled the first problem as a weighted graph with nodes and weights corresponding to
the compounds and reaction times prioritized by the synthetic biology company, we can proceed by
proof of contradiction.

There are two cases to consider:

Case 1: It is not possible produce compound τ starting from compound σ. Then the τ will not be
in the set S returned by Dijkstra’s.

Case 2: Let us assume that the path p representing the set of reactions, secretions, and absorptions
(edges) to reach τ from σ is not the cheapest.

That is the distance d(σ, τ) stored in the Priority Queue is greater than d∗(σ, τ) the length of the
optimal path. This is not possible since Dijkstra’s is guaranteed to return the shortest distance
from σ to all other reachable nodes in the graph, contradicting the proof of correctness for Dijkstra’s
algorithm.

Similarly, for the second problem, the same proof strategy can be employed, and even simplified when
relying on BFS:

There are two cases to consider:

Case 1: It is not possible produce compound τ starting from compound σ. Then the τ will not be
in the set S returned by BFS.

Case 2: Let us assume that the length of the path p representing the set of reactions, secretions,
and absorptions (edges) to reach τ from σ is not as short as possible.

9



CS 4104 (Spring 2021): Midterm Examination

This is not possible either since BFS explores the connected component of the graph that σ is
a part of, exploring outwards in layers. Therefore, if τ is in the same connected component of
the graph G as our starting compound σ, then it exists in some layer Li that will be explored on
some iteration i of BFS. All of the compounds on layer Li−1 that can produce τ are equidistant
from σ, and therefore the optimal path to τ from the starting compound will be found before BFS
advances to another layer Li+1 (representing higher cost) that might contain a compound that
can also produce τ .

10


