Proof for Optimality of Earliest Finish Time Algorithm for Interval Scheduling

T. M. Murali

Suppose that A is the set of jobs computed by the Earliest First Time (EFT) algorithm and that A has k jobs. We can sort the jobs in non-decreasing order of finish time. ${ }^{1}$ Let $i_{i}, i_{2}, i_{3}, \ldots i_{k-1}, i_{k}$ be the jobs in this order. Because of the way we sorted them, we know that for every $1 \leq t \leq k-1,{ }^{2} f\left(i_{t}\right) \leq f\left(i_{t+1}\right)$.

Now suppose that the algorithm has not produced an optimal solution. Then there must some other set O of jobs with $m>k$ jobs. Since O is a solution to the problem, the jobs in it are mutually compatible. We can sort the jobs in O by finish time as well. ${ }^{3}$ Let $j_{i}, j_{2}, j_{3}, \ldots j_{m-1}, j_{m}$ be the jobs in these order. Because of the way we sorted them, we know that for every $1 \leq t \leq m-1, f\left(i_{t}\right) \leq f\left(i_{t+1}\right)$.

The key idea now is to compare the jobs at the same index in A and O. They must have different jobs ${ }^{4}$ at some index; otherwise, both A and O would be the same, meaning the algorithm is optimal! Let p be the first index at which they are different, i.e., for every index $q<p, i_{q}=j_{q}$ but $i_{p} \neq j_{p}$. Note that it is possible that $p=1$. What we will do is to replace j_{p} with i_{p} in O and show that O still contains a compatible set of jobs. Thus, the smallest index at which A and O differ "bubbles" up by at least one index. There are three cases to consider.

Figure 1: The case when $i_{1} \neq j_{1}$. We show only the job i_{1} in A. Black dots indicate intermediate jobs. (a) Can the finish time of i_{1} be larger than the finish time of j_{1} (potentially causing i_{1} to conflict with j_{2})? (b) No! The reason is that i_{1} is the first job selected by the EFT algorithm. Hence, its finish time must be less than or equal to the finish time of j_{1}. (c) Therefore, if we replace j_{1} with i_{1} in O, all the jobs in O continue to be mutually compatible.

Case 1: $i_{1} \neq j_{1}$. As a warm-up, let us consider an easy case first. Suppose $i_{1} \neq j_{1}$ (Figure 1). Then we can start making some interesting observations. Since i_{1} was the first job selected by the EFT algorithm, its finish time must be the smallest among all the jobs in the input. Therefore, we can be sure that

$$
f\left(i_{1}\right) \leq f\left(j_{1}\right)
$$

i.e., the situation illustrated in Figure 1(a) is not possible. Moreover, since the jobs in O are mutually compatible, we have

$$
f\left(j_{1}\right) \leq s\left(j_{2}\right)
$$

[^0]Chaining these inequalities together, we have that

$$
\left.f\left(i_{1}\right) \leq s\left(j_{2}\right), \text { (Figure } 1(\mathrm{~b})\right)
$$

Therefore, if we replace j_{1} with i_{1} in O, then the jobs in O remain mutually compatible (Figure 1(c))!

Figure 2: The case when $i_{p} \neq j_{p}$, for some $p>1$. We show only the jobs i_{p-1} and i_{p} in A. Black dots indicate earlier, intermediate, or later jobs. (a) Can the finish time of i_{p} be larger than the finish time of j_{p} (potentially causing i_{p} and j_{p+1} to conflict)? (b) No! The reason is that both i_{p} and j_{p} start after i_{p-1} finishes. Therefore, after the EFT algorithm has selected i_{p-1} and included it in A, both i_{p} and j_{p} (which are compatible with i_{p-1}) were available for being chosen as the next job in A, However, the EFT algorithm selected the job i_{p}. Hence, its finish time must be less than or equal to the finish time of j_{p}. (c) Therefore, if we replace j_{p} with i_{p} in O, all the jobs in O continue to be mutually compatible.

Case 2: $i_{p} \neq j_{p}$, for some $1<p \leq k$. Now suppose that the smallest index at which A and O differ is some $p>1 ; p$ must also be at most k. Recall that this statement means that for every index $q<p, i_{q}=j_{q}$ but $i_{p} \neq j_{p}$. We can make virtually a similar argument as before but do it in two parts: ${ }^{5}$

$$
f\left(i_{p-1}\right)=f\left(j_{p-1}\right), \text { since } i_{p-1} \text { and } j_{p-1} \text { are the same job }
$$

Moreover, since the jobs in O are mutually compatible, we have

$$
f\left(j_{p-1}\right) \leq s\left(j_{p}\right)
$$

Chaining these inequalities together, we have that

$$
f\left(i_{p-1}\right) \leq s\left(j_{p}\right)
$$

Therefore, j_{p} is compatible with i_{p-1} and would have been in the list of jobs available to the EFT algorithm when it selected i_{p}. Since the algorithm selects the available job with the smallest finishing time, we can conclude that

$$
f\left(i_{p}\right) \leq f\left(j_{p}\right)
$$

All jobs with index $>p$ in O are compatible with j_{p}. Since we have just shown that $f\left(i_{p}\right) \leq f\left(j_{p}\right)$, we can conclude that i_{p} is also compatible with all jobs with index $>p$ in O. In other words, if we replace j_{p} with i_{p} in O, the set of jobs in O continue to be mutually compatible!

We can iterate this "exchange argument" for every index at which A and O have different jobs. It is crucial that we make this argument index by index, starting at the smallest index at which A and O differ. That is the only way we can guarantee the equality $f\left(i_{p-1}\right)=f\left(j_{p-1}\right)$ above. It is important to note that while the proof appears to be iterative, we are not describing an algorithm. All we are doing is mentally processing A and O and removing their differences one job at a time.

[^1]Case 3: $i_{p}=j_{p}$ for all $1 \leq p \leq k$ but $m>k$. Are we done? Well, no! The reason is that this process proves the following: as long as the index of the differing job is less than or equal to k, we can exchange the job in O with the job in A. Therefore, we can ensure that the sequence of jobs (notice the change at index $k+1$) $i_{1}, i_{2}, \ldots, i_{k-1}, i_{k}, j_{k+1}, j_{k+2}, \ldots j_{m-1}, j_{m}$ is mutually compatible. We have still not precluded the possibility that O contains more jobs than A.

Fortunately, it is easy to deal with this possibility. If O indeed has the structure above, then j_{k+1} is compatible with i_{k}. Therefore, after the EFT algorithm selected i_{k}, it would not have processed all the jobs, meaning that the while loop would not have ended. This fact contradicts our assumption that the algorithm output A when it concluded. Therefore, O must also have k jobs.

[^0]: ${ }^{1}$ This idea comes from the fact that about the only thing we know regarding the algorithm is that it outputs jobs in non-decreasing order of finish time.
 ${ }^{2}$ We don't allow $t=k$, since there is no job i_{k+1} in A.
 ${ }^{3}$ Let us get the jobs in O to also have the only property that we know of the jobs in A so far.
 ${ }^{4}$ Two jobs are different if have unequal starting times and/or unequal ending times.

[^1]: ${ }^{5}$ The argument for i_{1} was simpler because we had no earlier jobs to worry about. Here, we have to start the proof with i_{p-1} in mind.

