
Proof for Optimality of

Earliest Finish Time Algorithm for Interval Scheduling

T. M. Murali

Suppose that A is the set of jobs computed by the Earliest First Time (EFT) algorithm and that A has
k jobs. We can sort the jobs in non-decreasing order of finish time.1 Let ii, i2, i3, . . . ik−1, ik be the jobs in
this order. Because of the way we sorted them, we know that for every 1 ≤ t ≤ k − 1,2 f(it) ≤ f(it+1).

Now suppose that the algorithm has not produced an optimal solution. Then there must some other set
O of jobs with m > k jobs. Since O is a solution to the problem, the jobs in it are mutually compatible. We
can sort the jobs in O by finish time as well.3 Let ji, j2, j3, . . . jm−1, jm be the jobs in these order. Because
of the way we sorted them, we know that for every 1 ≤ t ≤ m− 1, f(it) ≤ f(it+1).

The key idea now is to compare the jobs at the same index in A and O. They must have different jobs4

at some index; otherwise, both A and O would be the same, meaning the algorithm is optimal! Let p be the
first index at which they are different, i.e., for every index q < p, iq = jq but ip 6= jp. Note that it is possible
that p = 1. What we will do is to replace jp with ip in O and show that O still contains a compatible set of
jobs. Thus, the smallest index at which A and O differ “bubbles” up by at least one index. There are three
cases to consider.

(a) (b) (c)

Figure 1: The case when i1 6= j1. We show only the job i1 in A. Black dots indicate intermediate jobs. (a)
Can the finish time of i1 be larger than the finish time of j1 (potentially causing i1 to conflict with j2)? (b)
No! The reason is that i1 is the first job selected by the EFT algorithm. Hence, its finish time must be less
than or equal to the finish time of j1. (c) Therefore, if we replace j1 with i1 in O, all the jobs in O continue
to be mutually compatible.

Case 1: i1 6= j1. As a warm-up, let us consider an easy case first. Suppose i1 6= j1 (Figure 1). Then we
can start making some interesting observations. Since i1 was the first job selected by the EFT algorithm,
its finish time must be the smallest among all the jobs in the input. Therefore, we can be sure that

f(i1) ≤ f(j1),

i.e., the situation illustrated in Figure 1(a) is not possible. Moreover, since the jobs in O are mutually
compatible, we have

f(j1) ≤ s(j2)

1This idea comes from the fact that about the only thing we know regarding the algorithm is that it outputs jobs in
non-decreasing order of finish time.

2We don’t allow t = k, since there is no job ik+1 in A.
3Let us get the jobs in O to also have the only property that we know of the jobs in A so far.
4Two jobs are different if have unequal starting times and/or unequal ending times.

1



Chaining these inequalities together, we have that

f(i1) ≤ s(j2), (Figure 1(b))

Therefore, if we replace j1 with i1 in O, then the jobs in O remain mutually compatible (Figure 1(c))!

(a) (b) (c)

Figure 2: The case when ip 6= jp, for some p > 1. We show only the jobs ip−1 and ip in A. Black dots
indicate earlier, intermediate, or later jobs. (a) Can the finish time of ip be larger than the finish time of
jp (potentially causing ip and jp+1 to conflict)? (b) No! The reason is that both ip and jp start after ip−1

finishes. Therefore, after the EFT algorithm has selected ip−1 and included it in A, both ip and jp (which
are compatible with ip−1) were available for being chosen as the next job in A, However, the EFT algorithm
selected the job ip. Hence, its finish time must be less than or equal to the finish time of jp. (c) Therefore,
if we replace jp with ip in O, all the jobs in O continue to be mutually compatible.

Case 2: ip 6= jp, for some 1 < p ≤ k. Now suppose that the smallest index at which A and O differ is
some p > 1; p must also be at most k. Recall that this statement means that for every index q < p, iq = jq
but ip 6= jp. We can make virtually a similar argument as before but do it in two parts:5

f(ip−1) = f(jp−1), since ip−1 and jp−1 are the same job

Moreover, since the jobs in O are mutually compatible, we have

f(jp−1) ≤ s(jp)

Chaining these inequalities together, we have that

f(ip−1) ≤ s(jp)

Therefore, jp is compatible with ip−1 and would have been in the list of jobs available to the EFT algorithm
when it selected ip. Since the algorithm selects the available job with the smallest finishing time, we can
conclude that

f(ip) ≤ f(jp)

All jobs with index > p in O are compatible with jp. Since we have just shown that f(ip) ≤ f(jp), we can
conclude that ip is also compatible with all jobs with index > p in O. In other words, if we replace jp with
ip in O, the set of jobs in O continue to be mutually compatible!

We can iterate this “exchange argument” for every index at which A and O have different jobs. It is
crucial that we make this argument index by index, starting at the smallest index at which A and O differ.
That is the only way we can guarantee the equality f(ip−1) = f(jp−1) above. It is important to note that
while the proof appears to be iterative, we are not describing an algorithm. All we are doing is mentally
processing A and O and removing their differences one job at a time.

5The argument for i1 was simpler because we had no earlier jobs to worry about. Here, we have to start the proof with ip−1

in mind.

2



Case 3: ip = jp for all 1 ≤ p ≤ k but m > k. Are we done? Well, no! The reason is that this process
proves the following: as long as the index of the differing job is less than or equal to k, we can exchange
the job in O with the job in A. Therefore, we can ensure that the sequence of jobs (notice the change at
index k + 1) i1, i2, . . . , ik−1, ik, jk+1, jk+2, . . . jm−1, jm is mutually compatible. We have still not precluded
the possibility that O contains more jobs than A.

Fortunately, it is easy to deal with this possibility. If O indeed has the structure above, then jk+1 is
compatible with ik. Therefore, after the EFT algorithm selected ik, it would not have processed all the jobs,
meaning that the while loop would not have ended. This fact contradicts our assumption that the algorithm
output A when it concluded. Therefore, O must also have k jobs.

3


